Arquitectura de seguridad multinivel con enfoque predictivo para sistemas de almacenamiento distribuido en infraestructuras Cloud
Palabras clave:
Seguridad multinivel, machine learning predictivo, almacenamiento distribuido, ciberseguridad Cloud, arquitecturas adaptativasResumen
El estudio desarrolla un análisis comprehensivo de arquitecturas de seguridad multinivel con capacidades predictivas para sistemas de almacenamiento distribuido en entornos cloud computing, la investigación se centra específicamente en analizar exhaustivamente la literatura existente sobre estrategias de seguridad multinivel y evaluar comparativamente diferentes modelos de arquitecturas de seguridad predictiva, metodológicamente, se adopta un enfoque cualitativo con diseño descriptivo-exploratorio, fundamentado en una revisión sistemática de literatura científica de bases de datos reconocidas como IEEE Xplore, ACM Digital Library y ScienceDirect. El análisis implementa un método interpretativo para identificar patrones y tendencias, categorizando sistemáticamente los hallazgos en diferentes dimensiones mediante matrices comparativas que evalúan aspectos como precisión predictiva, escalabilidad, tiempo de respuesta y consumo de recursos, los principales hallazgos revelan una clara evolución desde arquitecturas tradicionales basadas en seguridad perimetral hacia enfoques más sofisticados y adaptativos, además, se destaca que los modelos basados en técnicas de ensemble learning, particularmente Random Forest, demuestran una precisión superior en la detección de amenazas y anomalías.
Citas
Ahsan, M., Nygard, K., Gomes, R., Chowdhury, M., Rifat, N., & Connolly, J. (2022). Cybersecurity Threats and Their Mitigation Approaches Using Machine Learning—A Review. J. Cybersecur. Priv., 2(3), 527–555. https://doi.org/https://doi.org/10.3390/jcp2030027
Akinsanya, O., Papadaki, M., & Sun, L. (2023). Current cybersecurity maturity models: How effective in healthcare cloud? Collaborative European Research Conference, 2348, 211-222. https://doi.org/https://pearl.plymouth.ac.uk/secam-research/905
Al-jumaili, M. I., & Bazzi, D. J. (2023). Cyber-Attack Detection for Cloud-Based Intrusion Detection Systems. Mesopotamian journal of Cybersecurity, 2023, 170–182. https://doi.org/https://doi.org/10.58496/MJCS/2022/019
Alqahtani, A. S., Altammami, O. A., & Haq, M. A. (2024). A Comprehensive Analysis of Network Security Attack Classification using Machine Learning Algorithms. International Journal of Advanced Computer Science and Applications(IJACSA), 15(4). https://doi.org/http://dx.doi.org/10.14569/IJACSA.2024.01504127
Begna, G., & Rawat, D. B. (2019). Security Analysis in Context-Aware Distributed Storage and Query Processing in Hybrid Cloud Framework. Conference: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 177-183. https://doi.org/http://dx.doi.org/10.1109/CCWC.2019.8666498
Benabied, S., Zitouni, A., & Djoudi, M. (2015). A Cloud Security Framework Based on Trust Model and Mobile Agent. International Conference on Cloud Technologies and Applications (CloudTech). https://doi.org/https://www.doi.org/10.1109/CLOUDTECH.2015.7336962
Bharadiya, J. P. (2023). Machine Learning in Cybersecurity: Techniques and Challenges. European Journal of Technology, 7(2), 1-14. https://doi.org/http://dx.doi.org/10.47672/ejt.1486
Bheemashankar, A., & Subhajini, A. (2020). Security Enhancement Framework For Cloud Computing Environment. International Journal of Scientific & Technology Research, 9(2), 283-288. https://doi.org/https://mail.ijstr.org/final-print/feb2020/Security-Enhancement-Framework-For-Cloud-Computing-Environment.pdf
Chatterjee, A., & Prinz, A. (2022). Applying Spring Security Framework with KeyCloak-Based OAuth2 to Protect Microservice Architecture APIs: A Case Study. Sensors, 22(5). https://doi.org/https://www.doi.org/10.3390/s22051703
Hart, M., Dave, R., & Richardson, E. (2023). Next-Generation Intrusion Detection and Prevention System Performance in Distributed Big Data Network Security Architectures. (IJACSA) International Journal of Advanced Computer Science and Applications, 14(9), 990-998. https://doi.org/https://www.doi.org/10.14569/ijacsa.2023.01409103
Hesham, M., Essam, M., Bahaa, M., Mohamed, A., Gomaa, M., Hany, M., & Elsersy, W. (2024). Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection. ArXiv. https://doi.org/https://www.doi.org/10.48550/arxiv.2407.06014
Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R., & Szalachowski, P. (2020). The Security Reference Architecture for Blockchains: Toward a Standardized Model for Studying Vulnerabilities, Threats, and Defenses. IEEE Communications Surveys & Tutorials, 23(1), 341-390. https://doi.org/https://doi.org/10.1109/COMST.2020.3033665
Kathidjiotis, Y., Kolomvatsos, K., & Anagnostopoulos, C. (2020). Predictive intelligence of reliable analytics in distributed computing environments. Applied Intelligence, 50, 3219–3238. https://doi.org/https://doi.org/10.1007/s10489-020-01712-5
Kumar, P., & Bhatt, A. K. (2020). Enhancing multi-tenancy security in the cloud computing using hybrid ECC-based data encryption approach. The Institution of Engineering and Technology, 14(18), 3212-3222. https://doi.org/https://doi.org/10.1049/iet-com.2020.0255
Kumar, P., & Parihar, S. S. (2022). Working Analysis of Multistage Cloud Security Algorithms . International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(1). https://doi.org/https://doi.org/10.22214/ijraset.2022.40028
Lalchhanhima, H., Sailo, L., Malsawmtluangi, Venkatesan, N., Kawlni, L., & Lalramliana., C. (2024). Security Systems in Cloud Computing. Educational Administration: Theory and Practice, 30(5), 13584–13589. https://doi.org/https://doi.org/10.53555/kuey.v30i5.5858
Li, Y. (2021). Development of Computer Network Security Based on Cloud Computing. Journal of Physics: Conference Series, 2037. https://doi.org/http://dx.doi.org/10.1088/1742-6596/2037/1/012054
Ojha, D. R. (2024). Use of Artificial Neural Networks to Detect and Prevent Cybersecurity Threats. NPRC Journal of Multidisciplinary Research, 1(6). https://doi.org/https://doi.org/10.3126/nprcjmr.v1i6.71754
Oladimeji, G. (2024). A Critical Analysis of Foundations, Challenges and Directions for Zero Trust Security in Cloud Environments. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2411.06139
Pincheira, M., Donini, E., Vecchio, M., & Kanhere, S. S. (2022). A Decentralized Architecture for Trusted Dataset Sharing Using Smart Contracts and Distributed Storage. Sensors, 22(23). https://doi.org/https://www.doi.org/10.3390/s22239118
Reddy-Kunduru, A. (2023). Security Concerns and Solutions for Enterprise Cloud Computing Applications. Asian Journal of Research in Computer Science, 15(4), 24-33. https://doi.org/https://doi.org/10.9734/ajrcos/2023/v15i4327
Reddy-Vutukuru, S., & Chakravarthi-Lade, S. (2023). SecureIoT: Novel Machine Learning Algorithms for Detecting and Preventing Attacks on IoT Devices. Journal of Electrical Systems, 19(4). https://doi.org/https://doi.org/10.52783/jes.641
Tripathi, D., Biswas, A., Tripathi, A. K., Singh, L. K., & Chaturvedi, A. (2022). An integrated approach of designing functionality with security for distributed cyber-physical systems. The Journal of Supercomputing, 78, 14813–14845. https://doi.org/https://doi.org/10.1007/s11227-022-04481-9
Tulsyan, R., Shukla, P., Singh, T., & Bhardwaj, A. (2024). Cyber Security Threat Detection Using Machine Learning. International Journal Of Scientific Research In Engineering And Management (IJSREM), 8(10). https://doi.org/10.55041/IJSREM37949
Twum, F., Hayfron-Acquah, J. B., & Panford, J. K. (2020). A Comparative Study of Existing Cloud Security System Models as against an Implementation of the CDDI Model Dubbed SecureMyFiles System. International Journal of Computer Applications, 177(31), 17-37. https://doi.org/http://dx.doi.org/10.5120/ijca2020919765
Ugale, A. R., & Potgantwar, A. D. (2023). Anomaly Based Intrusion Detection through Efficient Machine Learning Model. International Journal of Electrical and Electronics Research (IJEER), 11(2), 616-622. https://doi.org/https://ijeer.forexjournal.co.in/archive/volume-11/ijeer-110251.html
Vekariya, D. V., Kannan, M., Gupta, S. K., Muthusamy, P., Mahajan, R., & Pandey, A. K. (2022). Analysis of Computer Network Security Storage System Based on Cloud Computing Environment. International journal of communication networks and information security, 14(2). https://doi.org/https://www.doi.org/10.17762/ijcnis.v14i2.5463
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Científica Episteme & Praxis

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Podrá reproducirse, de forma parcial o total, el contenido de esta publicación, siempre que se haga de forma literal y se mencione la fuente.